#### **EXPERIMENT 4**

## COMBINATIONAL LOGIC CIRCUITS AND ADDERS

### **OBJEJTIVE**

To gain experience in logic circuits and Adders.

## **HALF ADDER**

A half adder is a digital logic circuit with two input terminals and two output terminals. The output terminals are called the sum and carry outputs. The sum output of a half-adder circuit is the *exclusive OR* (*XOR*) function of the two inputs. That is, the sum output is 0 when the inputs are the same and 1 when they are different. The carry output is the *AND* function of the two inputs. It is 1 only when both inputs are 1.

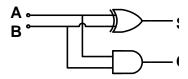
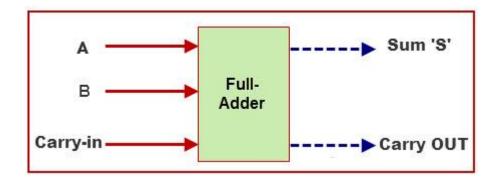




Figure 4.1. Implementation of a half-adder.

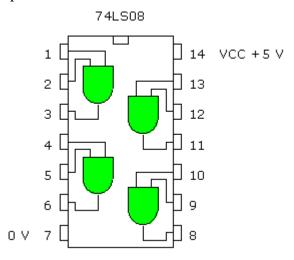
#### **FULL ADDER**

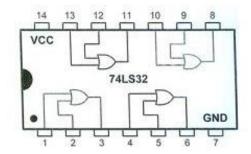
This adder is difficult to implement than a half-adder. The difference between a half-adder and a full-adder is that the full-adder has three inputs and two outputs, whereas half adder has only two inputs and two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. When a full-adder logic is designed, you string eight of them together to create a byte-wide adder and cascade the carry bit from one adder to the next.

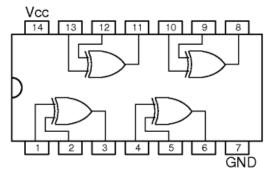


The output carry is designated as C-OUT and the normal output is designated as S.

**FULL ADDER TRUTH TABLE** 


| INPUTS |   |      | OUTPUT |   |
|--------|---|------|--------|---|
| A      | В | C-IN | C-OUT  | S |
| 0      | 0 | 0    | 0      | 0 |
| 0      | 0 | 1    | 0      | 1 |
| 0      | 1 | 0    | 0      | 1 |
| 0      | 1 | 1    | 1      | 0 |
| 1      | 0 | 0    | 0      | 1 |
| 1      | 0 | 1    | 1      | 0 |
| 1      | 1 | 0    | 1      | 0 |
| 1      | 1 | 1    | 1      | 1 |


# EXPERIMENTAL PROCEDURE


1) Implement full adder by using minimum amount of logic gates.

**Equipment** List

- 1) 74LS32 TTL OR GATE IC
- 2) 74LS08 TTL AND GATE IC
- 3) 74LS86 TTL XOR GATE IC
- 4) Standard set equipments







7486 Quad 2 Input XOR